top of page
Search

Grammar in Automata | Types of Grammar

Writer's picture: ismartthinkingismartthinking

Grammar in Automata-

Formal Definition-

A Grammar is a 4-tuple such that

G = (V , T , P , S)

where-


  • V = Finite non-empty set of non-terminal symbols

  • T = Finite set of terminal symbols

  • P = Finite non-empty set of production rules

  • S = Start symbol

Grammar Constituents-

A Grammar is mainly composed of two basic elements-


1. Terminal symbols

2. Non-terminal symbols

1. Terminal Symbols-

  • Terminal symbols are those which are the constituents of the sentence generated using a grammar.

  • Terminal symbols are denoted by using small case letters such as a, b, c etc.

2. Non-Terminal Symbols-

  • Non-Terminal symbols are those which take part in the generation of the sentence but are not part of it.

  • Non-Terminal symbols are also called as auxiliary symbols or variables.

  • Non-Terminal symbols are denoted by using capital letters such as A, B, C etc.

Examples of Grammar-

Example-01:

Consider a grammar G = (V , T , P , S) where-

  • V = { S }                                                  // Set of Non-Terminal symbols

  • T = { a , b }                                              // Set of Terminal symbols

  • P = { S → aSbS , S → bSaS , S → ∈ }   // Set of production rules

  • S = { S }                                                   // Start symbol

This grammar generates the strings having equal number of a’s and b’s

Example-02:

Consider a grammar G = (V , T , P , S) where-


  • V = { S , A , B }                                                  // Set of Non-Terminal symbols

  • T = { a , b }                                                        // Set of Terminal symbols

  • P = { S → ABa , A → BB , B → ab , AA → b }  // Set of production rules

  • S = { S }                                                            // Start symbol

Types of Grammars-

Grammars are classified on different basis as:-


We will discuss all these types of grammar one by one in detail.

Equivalent Grammars-

Two grammars are said to be equivalent if they generate the same languages.


Example-

Consider the following two grammars-

Grammar G1-

S → aSb / ∈

Grammar G2-

S → aAb / ∈

A → aAb / ∈


Thus, L(G1) = L(G2)


Since both the grammars generate the same language, therefore they are equivalent.

∴ G1 ≡ G2


14 views1 comment

Recent Posts

See All

1 comentario


Sir can you explain type of production rules

Me gusta
  • facebook
  • youtube
  • instagram

©2020 by School of CSWT. Proudly created with Wix.com

bottom of page